GreenPill - A Mailen Group Initiative

The promotion of the windmill as non-renewable source of energy...
Mehtar Hussain and Mustaq Ahemad

Clean & Green Energy

Not for a profit but for Green cause

Reusable Energy

  • Wind energy
  • Wind energy is the kinetic energy associated with the movement of atmospheric air. It has been used for hundreds of years for sailing, grinding grain, and for irrigation. Wind energy systems convert this kinetic energy to more useful forms of power. Wind energy systems for irrigation and milling have been in use since ancient times and since the beginning of the 20th century it is being used to generate electric power. Windmills for water pumping have been installed in many countries particularly in the rural areas.

    Wind turbines transform the energy in the wind into mechanical power, which can then be used directly for grinding etc. or further converting to electric power to generate electricity. Wind turbines can be used singly or in clusters called ‘wind farms’. Small wind turbines called aero-generators can be used to charge large batteries.

    Five nations – India, Germany, USA, Denmark, and Spain – account for 80% of the world’s installed wind energy capacity. Wind energy continues to be the fastest growing renewable energy source with worldwide wind power installed capacity reaching 40,000 MW.

    Realizing the growing importance of wind energy, manufacturers have steadily been increasing the unit size of the wind electric generators since the late 1980s. Another important development has been the offshore (i.e. in the sea) wind farms in some regions of Europe, which have several advantages over the on-shore ones. The third major development has been the use of new techniques to assess the wind resource for techno-commercial viability.

    Co-generation

    Co-generation is the concept of producing two forms of energy from one fuel. One of the forms of energy must always be heat and the other may be electricity or mechanical energy. In a conventional power plant, fuel is burnt in a boiler to generate high-pressure steam. This steam is used to drive a turbine, which in turn drives an alternator through a steam turbine to produce electric power. The exhaust steam is generally condensed to water which goes back to the boiler.

    As the low-pressure steam has a large quantum of heat which is lost in the process of condensing, the efficiency of conventional power plants is only around 35%. In a cogeneration plant, very high efficiency levels, in the range of 75%–90%, can be reached. This is so, because the low-pressure exhaust steam coming out of the turbine is not condensed, but used for heating purposes in factories or houses.

    Since co-generation can meet both power and heat needs, it has other advantages as well in the form of significant cost savings for the plant and reduction in emissions of pollutants due to reduced fuel consumption.

    Even at conservative estimates, the potential of power generation from co-generation in India is more than 20,000 MW. Since India is the largest producer of sugar in the world, bagasse-based cogeneration is being promoted. The potential for cogeneration thus lies in facilities with joint requirement of heat and electricity, primarily sugar and rice mills, distilleries, petrochemical sector and industries such as fertilizers, steel, chemical, cement, pulp and paper, and aluminum.

    Geothermal energy

    We live between two great sources of energy, the hot rocks beneath the surface of the earth and the sun in the sky. Our ancestors knew the value of geothermal energy; they bathed and cooked in hot springs. Today we have recognized that this resource has potential for much broader application.

    The core of the earth is very hot and it is possible to make use of this geothermal energy (in Greek it means heat from the earth). These are areas where there are volcanoes, hot springs, and geysers, and methane under the water in the oceans and seas. In some countries, such as in the USA water is pumped from underground hot water deposits and used to heat people’s houses.

    The utilization of geothermal energy for the production of electricity dates back to the early part of the twentieth century. For 50 years the generation of electricity from geothermal energy was confined to Italy and interest in this technology was slow to spread elsewhere. In 1943 the use of geothermal hot water was pioneered in Iceland.

    In India, Northwestern Himalayas and the western coast are considered geothermal areas. The Geological Survey of India has already identified more than 350 hot spring sites, which can be explored as areas to tap geothermal energy. Satellites like the IRS-1 have played an important role, through infrared photographs of the ground, in locating geothermal areas. The Puga valley in the Ladakh region has the most promising geothermal field. An experimental 1-kW generator is already in operation in this area. It is being used mainly for poultry farming, mushroom cultivation, and pashmina-wool processing, all of which need higher temperature.

    Hydel energy

    Energy from water sources

    The energy in the flowing water can be used to produce electricity. Waves result from the interaction of the wind with the surface of the sea and represent a transfer of energy from the wind to the sea. Energy can be extracted from tides by creating a reservoir or basin behind a barrage and then passing tidal waters through turbines in the barrage to generate electricity.

    Mini or Micro Hydro power

    Hydro power is one of the best, cheapest, and cleanest source of energy, although, with big dams, there are many environmental and social problems as has been seen in the case of the Tehri and the Narmada Projects. Small dams are, however, free from these problems. This is in fact one of the earliest known renewable energy sources, in the country (since the beginning of the 20th century).

    In fact, for the last few hundred years, people living in the hills of the Himalayas have been using water mills, or chakki, to grind wheat. The 130 KW small hydropower plant in Darjeeling set up in 1897, was the first in India. Besides being free from the problem of pollution, such plants are also free from issues and controversies that are associated with the bigger projects, namely affecting the lives of thousands of people living along the banks of the rivers, destruction of large areas under forest, and seismological threats.

    New environmental laws affected by the danger of global warming have made energy from small hydropower plants more relevant. These small hydropower plants can serve the energy needs of remote rural areas independently. The real challenge in a remote area lies in successful marketing of the energy and recovering the dues. Local industries should be encouraged to use this electricity for sustainable development.

    It is a technology with enormous potential, which could exploit the water resources to supply energy to remote rural areas with little access to conventional energy sources. It also eliminates most of the negative environmental effects associated with large hydro projects.

    Energy from the sea - Ocean thermal, tidal and wave energy

    Large amounts of solar energy is stored in the oceans and seas. On an average, the 60 million square kilometre of the tropical seas absorb solar radiation equivalent to the heat content of 245 billion barrels of oil. Scientists feel that if this energy can be tapped a large source of energy will be available to the tropical countries and to other countries as well. The process of harnessing this energy is called OTEC (ocean thermal energy conversion). It uses the temperature differences between the surface of the ocean and the depths of about 1000m to operate a heat engine, which produces electric power.

    Fuel cells

    What are fuel cells? Fuel cells are electrochemical devices that convert the chemical energy of a fuel directly and very efficiently into electricity (DC) and heat, thus doing away with combustion. The most suitable fuel for such cells is hydrogen or a mixture of compounds containing hydrogen. A fuel cell consists of an electrolyte sandwiched between two electrodes. Oxygen passes over one electrode and hydrogen over the other, and they react electrochemically to generate electricity, water, and heat.

    Though fuel cells have been used in space flights and combined supplies of heat and power, electric vehicles are the best option available to dramatically reduce urban air pollution. Compared to vehicles powered by the internal combustion engine, fuel-cell powered vehicles have very high energy conversion efficiency, (almost double that of currently used engines) and near-zero pollution, CO2 and water vapour being the only emissions. Fuel-cell-powered EV's (electric vehicles) score over battery operated EV's in terms of increased efficiency and easier and faster refuelling.

    Canada’s Ballad’s Power Systems and Germany’s Dailmer-Benz are world leaders in the application of fuel cell technology for meeting transportation needs. In India, diesel-run buses are a major means of transport and these emit significant quantities of SPM and SO2. Thus, fuel-cell powered buses could be introduced with relative ease and yet make a positive impact on urban air quality. Such buses are already in operation in Vancouver in Canada and in Illinois and California in the USA. Though rapid progress has been made, high initial cost is still the biggest hurdle in the widespread commercialization of fuel cells.

    Fuel cells for power generation – India has a large gap between the demand for and supply of power. Conventional large-scale power plants use non-renewable fuels with significant adverse ecological and environmental impacts. Fuel cell systems are excellent candidates for small-scale decentralized power generation.

    Fuel cells can supply combined heat and power to commercial buildings, hospitals, airports and military installation at remote locations. Fuel cells have efficiency levels up to 55% as compared to 35% of conventional power plants. The emissions are significantly lower (CO2 and water vapour being the only emissions). Fuel cell systems are modular (i.e. additional capacity can be added whenever required with relative ease) and can be set up wherever power is required.

    Biomass

    Biomass is a renewable energy resource derived from the carbonaceous waste of various human and natural activities. It is derived from numerous sources, including the by-products from the timber industry, agricultural crops, raw material from the forest, major parts of household waste and wood.

    Biomass does not add carbon dioxide to the atmosphere as it absorbs the same amount of carbon in growing as it releases when consumed as a fuel. Its advantage is that it can be used to generate electricity with the same equipment or power plants that are now burning fossil fuels. Biomass is an important source of energy and the most important fuel worldwide after coal, oil and natural gas.

    Traditional use of biomass is more than its use in modern application. In the developed world biomass is again becoming important for applications such as combined heat and power generation. In addition, biomass energy is gaining significance as a source of clean heat for domestic heating and community heating applications. In fact in countries like Finland, USA and Sweden the per capita biomass energy used is higher than it is in India, China or in Asia.

    Biomass fuels used in India account for about one third of the total fuel used in the country, being the most important fuel used in over 90% of the rural households and about 15% of the urban households.

    Instead of burning the loose biomass fuel directly, it is more practical to compress it into briquettes (compressing them through a process to form blocks of different shapes) and thereby improve its utility and convenience of use. Such biomass in the dense briquetted form can either be used directly as fuel instead of coal in the traditional chulhas and furnaces or in the gasifier. Gasifier converts solid fuel into a more convenient-to-use gaseous form of fuel called producer gas.

    Scientists are trying to explore the advantages of biomass energy as an alternative energy source as it is renewable and free from net CO2 (carbon dioxide) emissions, and is abundantly available on earth in the form of agricultural residue, city garbage, cattle dung, firewood, etc. Bio-energy, in the form of biogas, which is derived from biomass, is expected to become one of the key energy resources for global sustainable development.

    At present, biogas technology provides an alternative source of energy in rural India for cooking. It is particularly useful for village households that have their own cattle. Through a simple process cattle dung is used to produce a gas, which serves as fuel for cooking. The residual dung is used as manure.

    Biogas plants have been set up in many areas and are becoming very popular. Using local resources, namely cattle waste and other organic wastes, energy and manure are derived. A mini biogas digester has recently been designed and developed, and is being in-field tested for domestic lighting.

    Indian sugar mills are rapidly turning to bagasse, the leftover of cane after it is crushed and its juice extracted, to generate electricity. This is mainly being done to clean up the environment, cut down power costs and earn additional revenue. According to current estimates, about 3500 MW of power can be generated from bagasse in the existing 430 sugar mills in the country. Around 270 MW of power has already been commissioned and more is under construction.

    Solar energy

    Solar energy is the most readily available source of energy. It does not belong to anybody and is, therefore, free. It is also the most important of the non-conventional sources of energy because it is non-polluting and, therefore, helps in lessening the greenhouse effect.

    Solar energy has been used since prehistoric times, but in a most primitive manner. Before 1970, some research and development was carried out in a few countries to exploit solar energy more efficiently, but most of this work remained mainly academic. After the dramatic rise in oil prices in the 1970s, several countries began to formulate extensive research and development programmes to exploit solar energy.

    When we hang out our clothes to dry in the sun, we use the energy of the sun. In the same way, solar panels absorb the energy of the sun to provide heat for cooking and for heating water. Such systems are available in the market and are being used in homes and factories.
    In the next few years it is expected that millions of households in the world will be using solar energy as the trends in USA and Japan show. In India too, the Indian Renewable Energy Development Agency and the Ministry of Non-Conventional Energy Sources are formulating a programme to have solar energy in more than a million households in the next few years. However, the people’s initiative is essential if the programme is to be successful.

    India is one of the few countries with long days and plenty of sunshine, especially in the Thar desert region. This zone, having abundant solar energy available, is suitable for harnessing solar energy for a number of applications. In areas with similar intensity of solar radiation, solar energy could be easily harnessed. Solar thermal energy is being used in India for heating water for both industrial and domestic purposes. A 140 MW integrated solar power plant is to be set up in Jodhpur but the initial expense incurred is still very high.

    Solar energy can also be used to meet our electricity requirements. Through Solar Photovoltaic (SPV) cells, solar radiation gets converted into DC electricity directly. This electricity can either be used as it is or can be stored in the battery. This stored electrical energy then can be used at night.

    Home  |   About Greenpill  |   Resources |   Green Thumb  |   Go Green  |   Blog  |   Contact Us

    All rights reserved. GreenPill